
115-214

School	of	
Computer	Science

Principles	of	Software	Construction:
Class	invariants,	immutability,	and	testing

Josh	Bloch Charlie	Garrod

215-214

Administrivia

• Homework	4a	due	today,	11:59	p.m.
• Design	review	meeting	is	mandatory
– But	we	expect	it	to	be	really	helpful
– Feedback	is	a	wonderful	thing

• PSA	– You	have	less	than	one	week	left	to	
register	to	vote!	Dealine is	October	11!

315-214

Key	concepts	from	Tuesday…

• Internal	representations	matter
– The	wrong	representation	can	be	toxic

• Code	must	be	clean	and	concise
– Repetition	is	toxic

• Good	coding	habits	matter

415-214

Outline

• Class	invariants	and	defensive	copying
• Immutability
• Testing	and	coverage
• Testing	for	complex	environments
• Implementation	testing	with	assertions

515-214

Class	invariants

• Critical	properties	of	the	fields	of	an	object
• Established	by	the	constructor
• Maintained	by	public	method	invocations
–May	be	invalidated	temporarily	during	method	execution

615-214

Safe	languages	and	robust	programs

• Unlike	C/C++,	Java	language	safe
– Immune	to	buffer	overruns,	wild	pointers,	etc.

• Makes	it	possible	to	write	robust classes
– Correctness	doesn’t	depend	on	other	modules
– Even	in	safe	language,	requires	programmer	effort

715-214

Defensive	programming

• Assume	clients	will	try	to	destroy	invariants
– May	actually	be	true	(malicious	hackers)
– More	likely:	honest	mistakes

• Ensure	class	invariants	survive	any	inputs
– Defensive	copying
–Minimizing	mutability

815-214

public final class Period {
private final Date start, end; // Invariant: start <= end

/**
* @throws IllegalArgumentException if start > end
* @throws NullPointerException if start or end is null
*/

public Period(Date start, Date end) {
if (start.after(end))

throw new IllegalArgumentException(start + " > " + end);
this.start = start;
this.end = end;

}

public Date start() { return start; }
public Date end() { return end; }
... // Remainder omitted

}

This	class	is	not robust

915-214

The	problem:	Date is	mutable
// Attack the internals of a Period instance
Date start = new Date(); // (The current time)
Date end = new Date(); // " " "
Period p = new Period(start, end);
end.setYear(78); // Modifies internals of p!

1015-214

The	solution:	defensive	copying
// Repaired constructor - defensively copies parameters
public Period(Date start, Date end) {

this.start = new Date(start.getTime());
this.end = new Date(end.getTime());
if (this.start.after(this.end))
throw new IllegalArgumentException(start +“ > "+ end);

}

1115-214

A	few	important	details
• Copies	made	before checking	parameters
• Validity	check	performed	on	copies
• Eliminates	window	of	vulnerability
between	parameter	check	and	copy

• Thwarts	multithreaded	TOCTOU	attack
– Time-Of-Check-To-Time-Of-U

// BROKEN - Permits multithreaded attack!
public Period(Date start, Date end) {

if (start.after(end))
throw new IllegalArgumentException(start + " > " + end);

// Window of vulnerability
this.start = new Date(start.getTime());
this.end = new Date(end.getTime());

}

1215-214

Another	important	detail
• Used	constructor,	not	clone,	to	make	copies
– Necessary	because Date class	is	nonfinal
– Attacker	could	implement	malicious	subclass
• Records	reference	to	each	extant	instance
• Provides	attacker	with	access	to	instance	list

• But	who	uses	clone,	anyway?	[EJ	Item	11]

1315-214

Unfortunately,	constructors	are	only	half	the	battle

// Accessor attack on internals of Period
Period p = new Period(new Date(), new Date());
Date d = p.end();
p.end.setYear(78); // Modifies internals of p!

1415-214

The	solution:	more	defensive	copying

// Repaired accessors - defensively copy fields
public Date start() {

return new Date(start.getTime());
}
public Date end() {

return new Date(end.getTime());
}

Now	Period	class	is	robust!

1515-214

Summary
• Don’t	incorporate	mutable	parameters
into	object;	make	defensive	copies

• Return	defensive	copies	of	mutable	fields…
• Or	return	unmodifiable view	of	mutable	fields
• Real	lesson	– use	immutable	components
– Eliminates	the	need	for	defensive	copying

1615-214

Outline

• Class	invariants	and	defensive	copying
• Immutability
• Testing	and	coverage
• Testing	for	complex	environments
• Implementation	testing	with	assertions

1715-214

Immutable	classes

• Class	whose	instances	cannot	be	modified
• Examples:	String,	Integer,	BigInteger
• How,	why,	and	when	to	use	them

1815-214

How	to	write	an	immutable	class

• Don’t	provide	any	mutators
• Ensure	that	no	methods	may	be	overridden
• Make	all	fields	final
• Make	all	fields	private
• Ensure	security	of	any	mutable	components

1915-214

public final class Complex {
private final double re, im;

public Complex(double re, double im) {
this.re = re;
this.im = im;

}

// Getters without corresponding setters
public double realPart() { return re; }
public double imaginaryPart() { return im; }

// subtract, multiply, divide similar to add
public Complex add(Complex c) {

return new Complex(re + c.re, im + c.im);
}

Immutable	class	example

2015-214

@Override public boolean equals(Object o) {
if (!(o instanceof Complex)) return false;
Complex c = (Complex)o;
return Double.compare(re, c.re) == 0 &&

Double.compare(im, c.im) == 0;
}

@Override public int hashCode() {
return 31*Double.hashCode(re) + Double.hashCode(im);

}

@Override public String toString() {
return String.format("%d + %di”, re, im)";

}
}

Immutable	class	example	(cont.)
Nothing	interesting	here

2115-214

Distinguishing	characteristic

• Return	new	instance	instead	of	modifying
• Functional	programming
• May	seem	unnatural	at	first
• Many	advantages

2215-214

Advantages

• Simplicity
• Inherently	Thread-Safe
• Can	be	shared	freely
• No	need	for	defensive	copies	
• Excellent	building	blocks

2315-214

Major	disadvantage

• Separate	instance	for	each	distinct	value
• Creating	these	instances	can	be	costly

BigInteger moby = ...; // A million bits long
moby = moby.flipBit(0); // Ouch!

• Problem	magnified	for	multistep	operations
–Well-designed	immutable	classes	provide	common	
multistep	operations	as	primitives

– Alternative:	mutable	companion	class
• e.g.,	StringBuilder for	String

2415-214

When	to	make	classes	immutable

• Always,	unless	there's	a	good	reason	not	to
• Always	make	small	“value	classes”	immutable!
– Examples:	Color,	PhoneNumber,	Unit
– Date and	Point were	mistakes!
– Experts	often	use	long instead	of	Date

2515-214

When	to	make	classes	mutable

• Class	represents	entity	whose	state	changes
– Real-world	- BankAccount,	TrafficLight
– Abstract	- Iterator, Matcher, Collection
– Process	classes	- Thread,	Timer

• If	class	must	be	mutable,	minimize	mutability
– Constructors	should	fully	initialize	instance
– Avoid	reinitializemethods

2615-214

Outline

• Class	Invariants
• Immutability
• Testing	and	coverage
• Testing	for	complex	environments
• Implementation	testing	with	assertions

2715-214

Why	do	we	test?

2815-214

Testing	decisions

• Who	tests?
– Developers	who	wrote	the	code
– Quality	Assurance	Team	and	Technical	Writers
– Customers

• When	to	test?
– Before	and	during	development
– After	milestones
– Before	shipping
– After	shipping

2915-214

Test	driven	development

• Write	tests	before	code	
• Never	write	code	without	a	failing	test
• Code	until	the	failing	test	passes

3015-214

Why	use	test	driven	development?

• Forces	you	to	think	about	interfaces	early
• Higher	product	quality
– Better	code	with	fewer	defects

• Higher	test	suite	quality
• Higher	productivity
• It’s	fun	to	watch	tests	pass

3115-214

TDD	in	practice

• Empirical	studies	on	TDD	show:
–May	require	more	effort
–May	improve	quality	and	save	time

• Selective	use	of	TDD	is	best
• Always	use	TDD	for	bug	reports
– Regression	tests

3215-214

How	much	testing?

• You	generally	cannot	test	all	inputs
– Too	many	– usually	infinite

• But	when	it	works,	exhaustive	testing	is	best!

3315-214

What	makes	a	good	test	suite?

• Provides	high	confidence	that	code	is	correct
• Short,	clear,	and	non-repetitious
–More	difficult	for	test	suites	than	regular	code
– Realistically,	test	suites	will	look	worse

• Can	be	fun	to	write	if	approached	in	this	spirit

3415-214

Next	best	thing	to	exhaustive	testing:	random	inputs

• Also	know	as	fuzz	testing,	torture	testing
• Try	“random”	inputs,	as	many	as	you	can
– Choose	inputs	to	tickle	interesting	cases
– Knowledge	of	implementation	helps	here

• Seed	random	number	generator	so	tests	repeatable

3515-214

Black-box	testing

• Look	at	specifications,	not	code
• Test	representative	cases
• Test	boundary	conditions
• Test	invalid	(exception)	cases
• Don’t	test	unspecified	cases

3615-214

White-box	testing

• Look	at	specifications	and code
• Write	tests	to:
– Check	interesting	implementation	cases
–Maximize	branch	coverage

3715-214

Code	coverage	metrics

• Method	coverage	– coarse	
• Branch	coverage	– fine
• Path	coverage	– too	fine
– Cost	is	high,	value	is	low
– (Related	to	cyclomatic complexity)

3815-214

Coverage	metrics:	useful	but	dangerous

• Can	give	false	sense	of	security
• Examples	of	what	coverage	analysis	could	miss
– Data	values
– Concurrency	issues	– race	conditions	etc.
– Usability	problems
– Customer	requirements	issues

• High	branch	coverage	is	not sufficient

3915-214

Test	suites	– ideal	and	real

• Ideal	test	suites
– Uncover	all	errors	in	code
– Test	“non-functional”	attributes	such	as	
performance	and	security

–Minimum	size	and	complexity
• Real	test	Suites
– Uncover	some	portion	of	errors	in	code
– Have	errors	of	their	own
– Are	nonetheless	priceless

4015-214

Outline

• Class	invariants
• Immutability
• Testing	and	coverage
• Testing	for	complex	environments
• Implementation	testing	with	assertions

4115-214

Problems	when	testing	some	apps

• User-facing	applications
– Users	click,	drag,	etc.,	and	interpret	output
– Timing	issues

• Testing	against	big	infrastructure
– Databases,	web	services,	etc.

• Real	world	effects
– Printing,	mailing	documents,	etc.

• Collectively	comprise	the	test	environment

4215-214

Example	– Tiramisu	app

• Mobile	route	planning	app
• Android	UI
• Back	end	uses
live	PAT	data

4315-214

Another	example

• 3rd	party	Facebook apps
• Android	user	interface
• Backend	uses
Facebook	data

4415-214

Testing	in	real	environments
Code FacebookAndroid	client

void buttonClicked() {
render(getFriends());

}
List<Friend> getFriends() {

Connection c = http.getConnection();
FacebookApi api = new Facebook(c);
List<Node> persons = api.getFriends("john");
for (Node person1 : persons) {

for (Node person2 : persons) {
…
}

}
return result;

}

4515-214

Eliminating	Android	dependency
Code FacebookTest	driver

@Test void testGetFriends() {
assert getFriends() == ...;

}
List<Friend> getFriends() {

Connection c = http.getConnection();
FacebookAPI api = new FacebookAPI(c);
List<Node> persons = api.getFriends("john");
for (Node person1 : persons) {

for (Node person2 : persons) {
…
}

}
return result;

}

4615-214

That	won’t	quite	work

• GUI	applications	process	thousands of	events
• Solution:	automated	GUI	testing	frameworks
– Allow	streams	of	GUI	events	to	be	captured,	replayed	

• These	tools	are	sometimes	called	robots

4715-214

Eliminating	Facebook dependency
Code Mock	

Facebook

@Test void testGetFriends() {
assert getFriends() == …;

}
List<Friend> getFriends() {

FacebookApi api = new MockFacebook(c);
List<Node> persons = api.getFriends("john");
for (Node person1 : persons) {

for (Node person2 : persons) {
…
}

}
return result;

}

Test	driver

4815-214

That	won’t	quite	work!

• Changing	production	code	for	testing	unacceptable
• Problem	caused	by	constructor in	code
• Use	factory	instead	of	constructor
• Use	tools	to	facilitate	this	sort	of	testing
– Dependency	injection	tools,	e.g.,	Dagger,	Guice
–Mock	object	frameworks	such	as	Mockito

4915-214

Fault	injection

• Mocks	can	emulate	failures	such	as	timeouts
• Allows	you	to	verify	the	robustness	of	system

Code Mock	
FacebookTest	driver

5015-214

Advantages	of	using	mocks

• Test	code	locally	without	large	environment
• Enable	deterministic	tests
• Enable	fault	injection
• Can	speed	up	test	execution
– e.g.,	avoid	slow	database	access

• Can	simulate	functionality	not	yet	implemented
• Enable	test	automation

5115-214

Design	Implications	

• Think	about	testability	when	writing	code
• When	a	mock	may	be	appropriate,	design	for	it
• Hide	subsystems	behind	an	interfaces
• Use	factories,	not	constructors	to	instantiate
• Use	appropriate	tools
– Dependency	injection	or	mocking	frameworks

5215-214

More	Testing	in	15-313
Foundations	of	Software	Engineering
• Manual	testing
• Security	testing,	penetration	testing
• Fuzz	testing	for	reliability
• Usability	testing
• GUI/Web	testing
• Regression	testing
• Differential	testing
• Stress/soak	testing

5315-214

Outline

• Class	Invariants
• Immutability
• Test	suites	and	coverage
• Testing	for	complex	environments
• Implementation-testing	with	assertions

5415-214
54

What	is	an	assertion?

• Statement	containing	boolean expression	that	
programmer	believes	to	be	true:

assert speed <= SPEED_OF_LIGHT;

• Evaluated	at	run	time	– throws	Error if	false
• Disabled	by	default	- no	performance	effect
• Typically	enabled	during	development
• Can	enable	in	the	field	when	problems	occur!

5515-214

Syntax

AssertStatement:
assert Expression1 ;
assert(Expression1, Expression2) ;

• Expression1 - asserted	condition	(boolean)
• Expression2 - detail	message	of AssertionError

55

5615-214

Why	use	assertions?

• Document	&	test	programmer's	assumptions
– e.g.,	class	invariants

• Verify	programmer’s	understanding
• Quickly	uncover	bugs
• Increase	confidence	that	program	is	bug-free
• Asserts	turn	black	box	tests	into	white	box	tests

56

5715-214
57

Look	for	“assertive	comments”
int remainder = i % 3;
if (remainder == 0) {

...
} else if (remainder == 1) {

...
} else { // (remainder == 2)

...
}

5815-214
58

Replace	with	real	assertions!
int remainder = i % 3;
if (remainder == 0) {

...
} else if (remainder == 1) {

...
} else {

assert remainder == 2;
...

}

5915-214
59

Use	second	argument	for	failure	capture

if (i % 3 == 0) {
...

} else if (i % 3 == 1) {
...

} else {
assert (i % 3 == 2, i);
...

}

6015-214
60

Look	for	switch	with	no	default
switch(flavor) {

case VANILLA:
...
break;

case CHOCOLATE:
...
break;

case STRAWBERRY:
...

}

6115-214
61

Add	an	“assertive	default”
switch(flavor) {
case VANILLA:
...
break;

case CHOCOLATE:
...
break;

case STRAWBERRY:
...
break;

default:
assert (false, flavor);

}

6215-214
62

Do	not	use	assertions	for	public preconditions

/**
* Sets the refresh rate.
*
* @param rate refresh rate, in frames per second.
* @throws IllegalArgumentException if rate <= 0
* or rate > MAX_REFRESH_RATE.
*/
public void setRefreshRate(int rate) {

if (rate <= 0 || rate > MAX_REFRESH_RATE)
throw new IllegalArgumentException(...);

setRefreshInterval(1000 / rate);
}

6315-214
63

Do use	assertions	for	non-public preconditions

/**
* Sets the refresh interval (which must correspond
* to a legal frame rate).
*
* @param interval refresh interval in ms
*/
private void setRefreshInterval(int interval) {

assert interval > 0 && interval <= 1000, interval;
... // Set the refresh interval

}

6415-214
64

Do use	assertions	for	postconditions
/**
* Returns BigInteger whose value is (this-1 mod m).
* @throws ArithmeticException if m <= 0, or this
* BigInteger is not relatively prime to m.
*/
public BigInteger modInverse(BigInteger m) {

if (m.signum() <= 0)
throw new ArithmeticException(m + "<= 0");

... // Do the computation
assert this.multiply(result).mod(m).equals(ONE);
return result;

}

6515-214
65

Complex	postconditions

void foo(int[] a) {
// Manipulate contents of array
...

// Array will appear unchanged
}

6615-214
66

Assertions	for	complex	postconditions

void foo(final int[] a) {
class DataCopy {

private int[] aCopy;
DataCopy() { aCopy = (int[]) a.clone(); }
boolean isConsistent() {

return Arrays.equals(a, aCopy);
}

}
DataCopy copy = null;
assert (copy = new DataCopy()) != null;
... // Manipulate contents of array
assert copy.isConsistent();

}

6715-214
67

Caveat	– asserts	must	not	have	side	
effects	visible	outside	other	asserts

Do	this:
boolean modified = set.remove(elt);
assert modified;

Not	this:
assert set.remove(elt); //Bug!

6815-214
68

Sermon:	accept	assertions	into	your	life

• Programmer’s	interior	monologue:
– “Now	at	this	point,	we	know...”

• During,	not	after,	development
• Quickly	becomes	second	nature
• Pays	big	code-quality	dividends

6915-214

Conclusion

• To	maintain	class	invariants
–Minimize	mutability
–Make	defensive	copies	where	required

• Interface	testing	is	critical
– Design	interfaces	to	facilitate	testing
– Coverage	tools	can	help	gauge	test	suite	quality

• Use	assertions	to	test	implementation	details
– Asserts	amplify	the	value	of	your	interface	tests

